448 research outputs found

    Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current

    Full text link
    The hydrodynamic equation for the spatial and temporal evolution of the electron temperature T_e in the breakdown of the quantum Hall effect at even-integer filling factors in a uniform current density j is derived from the Boltzmann-type equation, which takes into account electron-electron and electron-phonon scatterings. The derived equation has a drift term, which is proportional to j and to the first spatial derivative of T_e. Applied to the spatial evolution of T_e in a sample with an abrupt change of the width along the current direction, the equation gives a distinct dependence on the current direction as well as a critical relaxation, in agreement with the recent experiments.Comment: 4 pages, 1 Postscript figure, corrected equations, to be published in J. Phys. Soc. Jpn. 70 (2001) No.

    Theory of Current-Induced Breakdown of the Quantum Hall Effect

    Full text link
    By studying the quantum Hall effect of stationary states with high values of injected current using a von Neumann lattice representation, we found that broadening of extended state bands due to a Hall electric field occurs and causes the breakdown of the quantum Hall effect. The Hall conductance agrees with a topological invariant that is quantized exactly below a critical field and is not quantized above a critical field. The critical field is proportional to B3/2B^{3/2} and is enhanced substantially if the extended states occupy a small fraction of the system.Comment: 5 pages, RevTeX, final version to appear in PR

    Dynamical Screening and Superconducting State in Intercalated Layered Metallochloronitrides

    Full text link
    An essential property of layered systems is the dynamical nature of the screened Coulomb interaction. Low energy collective modes appear as a consequence of the layering and provide for a superconducting-pairing channel in addition to the electron-phonon induced attractive interaction. We show that taking into account this feature allows to explain the high critical temperatures (Tc~26K) observed in recently discovered intercalated metallochloronitrides. The exchange of acoustic plasmons between carriers leads to a significant enhancement of the superconducting critical temperature that is in agreement with the experimental observations

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.

    Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation

    Get PDF
    The international Functional Annotation Of the Mammalian Genomes 4 (FANTOM4) research collaboration set out to better understand the transcriptional network that regulates macrophage differentiation and to uncover novel components of the transcriptome employing a series of high-throughput experiments. The primary and unique technique is cap analysis of gene expression (CAGE), sequencing mRNA 5ā€²-ends with a second-generation sequencer to quantify promoter activities even in the absence of gene annotation. Additional genome-wide experiments complement the setup including short RNA sequencing, microarray gene expression profiling on large-scale perturbation experiments and ChIPā€“chip for epigenetic marks and transcription factors. All the experiments are performed in a differentiation time course of the THP-1 human leukemic cell line. Furthermore, we performed a large-scale mammalian two-hybrid (M2H) assay between transcription factors and monitored their expression profile across human and mouse tissues with qRT-PCR to address combinatorial effects of regulation by transcription factors. These interdependent data have been analyzed individually and in combination with each other and are published in related but distinct papers. We provide all data together with systematic annotation in an integrated view as resource for the scientific community (http://fantom.gsc.riken.jp/4/). Additionally, we assembled a rich set of derived analysis results including published predicted and validated regulatory interactions. Here we introduce the resource and its update after the initial release

    Magnetic von-Neumann lattice for two-dimensional electrons in the magnetic field

    Full text link
    One-particle eigenstates and eigenvalues of two-dimensional electrons in the strong magnetic field with short range impurity and impurities, cosine potential, boundary potential, and periodic array of short range potentials are obtained by magnetic von-Neumann lattice in which Landau level wave functions have minimum spatial extensions. We find that there is a dual correspondence between cosine potential and lattice kinetic term and that the representation based on the von-Neumann lattice is quite useful for solving the system's dynamics.Comment: 21pages, figures not included, EPHOU-94-00

    Transport properties of Layer-Antiferromagnet CuCrS2: A possible thermoelectric material

    Full text link
    The electrical, thermal conductivity and Seebeck coefficient of the quenched, annealed and slowly cooled phases of the layer compound CuCrS2 have been reported between 15K to 300K. We also confirm the antiferromagnetic transition at 40K in them by our magnetic measurements between 2K and 300K. The crystal flakes show a minimum around 100K in their in-plane resistance behavior. For the polycrystalline pellets the resistivity depends on their flaky texture and it attains at most 10 to 20 times of the room temperature value at the lowest temperature of measurement. The temperature dependence is complex and no definite activation energy of electronic conduction can be discerned. We find that the Seebeck coefficient is between 200-450 microV/K and is unusually large for the observed resistivity values of between 5-100 mOhm-cm at room temperature. The figure of merit ZT for the thermoelectric application is 2.3 for our quenched phases, which is much larger than 1 for useful materials. The thermal conductivity K is mostly due to lattice conduction and is reduced by the disorder in Cu- occupancy in our quenched phase. A dramatic reduction of electrical and thermal conductivity is found as the antiferromagnetic transition is approached from the paramagnetic region, and K subsequently rises in the ordered phase. We discuss the transport properties as being similar to a doped Kondo-insulator

    Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2

    Full text link
    Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors possess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.Comment: 23 pages, 5 figures, 1 table (table caption has been revised), to appear in J. Phys. Soc. Jp

    Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown

    Full text link
    A theory of integer quantum Hall effect(QHE) in realistic systems based on von Neumann lattice is presented. We show that the momentum representation is quite useful and that the quantum Hall regime(QHR), which is defined by the propagator in the momentum representation, is realized. In QHR, the Hall conductance is given by a topological invariant of the momentum space and is quantized exactly. The edge states do not modify the value and topological property of Ļƒxy\sigma_{xy} in QHR. We next compute distribution of current based on effective action and find a finite amount of current in the bulk and the edge, generally. Due to the Hall electric field in the bulk, breakdown of the QHE occurs. The critical electric field of the breakdown is proportional to B3/2B^{3/2} and the proportional constant has no dependence on Landau levels in our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision

    Hydrodynamic Equations in Quantum Hall Systems at Large Currents

    Full text link
    Hydrodynamic equations (HDEQs) are derived which describe spatio-temporal evolutions of the electron temperature and the chemical potential of two-dimensional systems in strong magnetic fields in states with large diagonal resistivity appearing at the breakdown of the quantum Hall effect. The derivation is based on microscopic electronic processes consisting of drift motions in a slowly-fluctuating potential and scattering processes due to electron-electron and electron-phonon interactions. In contrast with the usual HDEQs, one of the derived HDEQs has a term with an energy flux perpendicular to the electric field due to the drift motions in the magnetic field. As an illustration, the current distribution is calculated using the derived HDEQs.Comment: 10 pages, 2 Postscript figures, to be published in J. Phys. Soc. Jpn. 71 (2002) No.
    • ā€¦
    corecore